
One	Knight	in	Product	-	E98	-	Irene	Yu
Mon,	12/20	10:19PM 36:29

SUMMARY	KEYWORDS

product	managers,	technical,	coding,	programme,	people,	skip,	dev,	students,	questions,	tech,
technical	skills,	product,	software,	understand,	dev	team,	interviews,	concepts,	developers,	technology,
database

SPEAKERS

Jason	Knight,	Irene	Yu

Jason	Knight 00:00
Hello,	and	welcome	to	the	show.	I'm	your	host,	Jason	Knight.	And	on	each	episode	of	this
podcast,	I'll	be	having	inspiring	conversations	with	passionate	product	people.	I'll	be	talking	to
thought	leaders	and	practitioners	in	and	around	product	management	to	help	you	build	the
right	products	and	build	them	right.	If	that	sounds	like	the	sort	of	thing	you're	into,	let's	develop
that	relationship,	you	can	head	over	to	OneKnightInProduct.com.	After	this	where	you	can	sign
up	to	the	mailing	list,	subscribe	on	your	favourite	podcast	app	or	follow	the	podcast	on	your
favourite	social	media	platform	and	guarantee	you	never	miss	another	episode	again.	On
tonight's	episode,	we	get	technical	and	wonder	if	learning	out	of	that	hello	world	in	Python	is
really	going	to	help	product	managers	bond	with	their	engineering	counterparts.	We	reflect
about	what	being	technical	really	means,	why	it's	important	how	far	you	should	go,	and	what
you	should	focus	on	to	give	you	the	greatest	chance	of	success.	We	also	ponder	the	glorious
future	where	hiring	managers	don't	ask	people	who	will	never	have	to	code	in	their	day	jobs	to
do	a	coding	exercise	in	an	interview	and	wonder	why	they	even	started	doing	that	in	the	first
place.	For	all	this	and	much	more,	please	join	us	on	One	Knight	In	Product.	So	my	guest	tonight
is	Irene	Yu.	Irene's	a	former	graphic	designer	turns	software	developer	turned	company	founder
and	educator.	Irene	started	coding	at	10	and	has	worked	at	a	glittering	array	of	tech	companies
including	up	and	coming	Everything	Store	Amazon,	before	getting	bored	explaining	basic
architectural	diagrams	to	confused	product	managers	and	setting	up	skip	level,	which	is	aiming
to	help	product	managers	and	non	tech	startup	founders	become	more	technical,	so	they	can
understand	the	trade	offs	of	technical	decisions	before	presumably	ignoring	them.	Anyway.	Hi,
Irene.	How	are	you	tonight?

Irene	Yu 01:36
Hey,	Jason,	I'm	so	happy	to	be	here.	Thank	you	for	having	me.

Jason	Knight 01:40

I



No	problem.	So	first	things	first,	you	are	the	founder	and	lead	mentor	at	Skiplevel.	So	for	the
record,	what	problem	does	Skiplevel	solve	for	me?

Irene	Yu 01:50
Oh	boy,	where	do	I	start?	Well,	I	created	Skiplevel	as	the	go	to	place	for	non	engineering	tech
professionals	learn	the	technical	skills	and	knowledge	that	they	need	to	succeed	in	tech.	And	to
feel	more	confident	most	importantly,	to	feel	more	confident.	Yeah.	So	you	know,	first,	lots	of
professionals	that	work	in	tech	who	aren't	those	don't	actually	have	a	technical	background.	So
many	of	them	come	from	a	business	or	a	marketing	background.	And	they're	kind	of	just
thrown	into	the	pit	of	fire,	to	kind	of	figure	it	out	themselves.	And	frankly,	a	lot	of	people
struggle	with	that.	And	it's	not	that	people	don't	want	to	learn	or	that	they're	lazy	or	something,
right,	it's	just	that	there	isn't	really	a	good	and	easy	place	to	actually	learn	technical	skills	and
knowledge	that's	actually	useful	for	the	non	engineering	tech	role.	So	you	know,	there's	plenty
of	people	who	take	a	coding	class,	which	I	talk	about	all	the	time,	in	order	to	be	more	technical.
And	that's	actually	the	least	effective	way	to	become	more	technical.	So	most	technical
education	that's	available	today	were	created	for	engineers.	That	means	most	of	the	technical
education	either	go	too	deep	into	coding	into	building,	that	it	becomes	confusing,	or	it	doesn't
provide	enough	context	on	fundamental	tech	concepts,	or	they	don't	explain	technical	terms
and	lingo	well	enough,	or	just	doesn't	provide	information	that	is	actually	useful	for	the	non
engineering	tech	role	that	works	with	dev	teams,	but	is	not	necessarily	a	dev	themselves.	So
skip	level	is	meant	to	be	the	safe	place	that	helps	professionals	increase	their	technical	chops
in	a	way	that's	comprehensive,	and	easy	to	follow.

Jason	Knight 03:31
Yeah,	that	sounds	good.	And	obviously,	it's	interesting.	Yeah,	I	know,	we've	both	come	from
development	backgrounds,	ourselves.	And	I'm	thinking	like,	as	you're	talking	about	technical
books	of	things	like	clean	code,	and	all	these	other	types	of	books	that	you	have,	they're	very
much	focusing	on	like	the	best	way	to	write	classes.	And	the	best	way	to	just	structure	your
code.	And	I	guess,	what	you're	saying	is	that	that's	not	really	the	best	way	for	people	to	learn
how	to	be	technical	at	all.	But	do	you	think	that	those	are	kind	of	follow	on	books	from	this	type
of	thing?	Or	do	you	believe	that	really,	the	goal	is	to	get	them	to	a	certain	point,	and	then	they
kind	of	stop	and	do	other	product	management	stuff	instead?

Irene	Yu 04:09
Yeah,	I	think	that	the	ultimate	goal	is	for	them	to	be	technical	enough	to	be	able	to	ask	the
right	questions.	Yeah.	And	I	know	that	sounds	a	little	bit	fluffy.	But	let	me	explain.	So	every
team	and	company	does	technology	a	little	bit	differently.	You	know,	they	architect	their
software	a	little	bit	differently.	They	set	up	the	infrastructure	a	little	bit	differently,	their
shipping	schedules	are	a	little	bit	different,	right?	So	the	sign	or	the	yardstick	by	which	we
measure	someone	who	has	technical	is	that	they're	able	to	go	to	any	company,	talk	to	anyone
about	a	product,	and	that	they	are	able	to	ask	the	right	questions	to	then	understand	how
technology	is	being	done	on	that	specific	team	or	that	product.	So	it's	kind	of	like	teaching
someone	to	fish	versus	giving	them	the	fish	to	feed	them	once	right.	The	second	thing	is	that,
you	know,	technology	changes	all	the	time,	it	changes	very	quickly.	There's	always	something

I

I



new	coming	out	onto	the	market,	there's	always	a	new	tool,	there's	always	a	new	service.	I
mean,	my	head	is	spinning,	right?	But	if	you	have	enough	tech	fundamentals,	and	can
understand	tech	lingo	well	enough,	you	can	know	what	to	Google?	And	what	questions	to	ask	to
understand	what	is	this	new	tech,	and	what	problems	it	solves?	And	how	to	speak	about	it.	So,
you	know,	learning	technology,	getting	technical	skills	is	actually	a	long	game.	Yeah,	there's	no
magic	bullet	that	will	immediately	make	you	a	super	senior	engineer,	right?	It's	really	a
combination	of	active	learning.	And	just	by	doing	it,	you	know,	through	every	single	day
working	and	building	technology	and	working	with	web	scenes,	and	skip	lover	is	a	really	great
precursor	to	kind	of	getting	a	head	start	and	that	learning	process.	So	it	may	take	someone
three	years	to	figure	out	what	an	API	is,	and	what	are	the	components,	right,	some	directors	of
product	management	that	I	know,	never	learn	it.	And	that's	something	that	you	can	actually
learn	in	the	Skiplevel	programme	in	like,	15	minutes.

Jason	Knight 06:07
Oh,	there	you	go.	I'll	sign	up	tomorrow.	But	it's	just	then	aimed	primarily	at	product	managers.	I
mean,	we've	talked	about	product	managers	already.	And	I	know	that	we	said	an	intro	about
startup	founders	as	well.	So	is	it	really	focused	at	that	kind	of	person?	Or	do	you	think	that	this
is	just	anyone	in	an	organisation	that	needs	to	have	some	kind	of	interaction	with	developers
like	salespeople	and	other	types	that	maybe	you	wouldn't	necessarily	consider	being	the	target
for	this	sort	of	thing?

Irene	Yu 06:33
Well,	yes,	and	no,	the	product	management	role	works	the	closest	with	dev	teams	without
having	to	code	themselves.	So	the	programme	was	created	with	the	product	management	role
in	mind.	But	it's	really	for	anyone	and	all	people	that	wants	to	feel	more	confident	in	their
technical	chops.	So	that	means	being	able	to	speak.	So	think,	to	write	to	communicate	more
technically,	and	have	a	better	understanding	of	what	goes	into	building	software.	Right?	What's
the	proper	way	of	building	software?	There	are	a	lot	of	students	in	the	skippable	programme
that	come	from	different	backgrounds.	So	there's	the	non	technical	side	of	founder	that's	very
popular,	I	had	one	who	was	looking	to	hire	a	CTO,	and	really	didn't	know	what	to	look	for	when
they	were	interviewing,	right.	Yeah.	So	even	taking	the	first	module	on	infrastructure	and
applications	was	really	helpful	for	the	person	to	be	able	to	ask	the	right	questions	and	also
follow	along	when	they	actually	get	an	answer.	And	then	ask	more	probing	know	deep	dive
questions.	There's	students	in	marketing	people	who	are	copywriters,	people	who	are	in	a	more
client	facing	role,	people	in	sales,	people	who	are	interviewing	for	a	tech	role,	who	decided	that
they	could	really	use	better	technical	chops.

Jason	Knight 07:48
Yeah,	makes	sense.	And	I	can	see	that	working	for	things	like	pre	sales	with	particularly
technical	products	as	well	kind	of	given	them	that	head	start,	like	you	say,	but	you	started	out
as	a	developer	yourself	as	the	day	you	started	programming	at	10.	As	did	I.	So	we're	basically
the	same	person	already.	We're	exactly	the	same.	Yes,	exactly	the	same	in	all	ways,	shapes
and	forms,	but	you	obviously	live	with	this	stuff.	But	what	was	it	that	got	you	into	programming
in	the	first	place?	What	got	you	sort	of	started	at	age	10	down	that	development	path?

I



Irene	Yu 08:17
Oh,	man,	what	a	blast	from	the	past.	Actually,	it	was	because	I	was	obsessed	with	my	blog
when	I	was	a	kid.	And	I	actually	started	out	my	background	in	graphic	and	web	design.	And
then	web	development	before	I	moved	into	software	engineering.	So	before	I	wrote	a	single	line
of	code,	I	actually	learned	how	to	use	this	design	programme	called	JASC	Paint	Shop.	Not	sure	if
you've	heard	of	it.

Jason	Knight 08:41
Paintshop	Pro?

Irene	Yu 08:42
Yep.	PaintShop	Pro!

Jason	Knight 08:43
Yeah,	I	remember	it	fondly

Irene	Yu 08:45
Yeah.	So	this	was	in	like,	the	very	early	days	of	the	web,	like	in	the	1990s,	before	Photoshop
really	took	the	lion's	share	of	the	market.	So	I	started	doing	web	development	in	my	teenage
years,	because,	you	know,	my	blog	just	had	to	look	amazing.	And	it	just	had	to	be	the	best.
Yeah.	And	it	turned	out	to	be	a	really	great	childhood	hobby,	because	I	started	off	my	dev
career	doing	web	design,	and	web	development,	and	just	a	lot	of	creative	technology	for	ad
agencies	before	I	moved	into	software	engineering	at	larger	companies

Jason	Knight 09:16
by	and	then	you	moved	into	those	larger	companies	and	into	the	world	of	software	engineering,
and	you've	worked	at	a	bunch,	but	obviously,	the	most	notable	that	you've	worked	at	is
Amazon.	Yeah,	we've	all	heard	of	Amazon.	What	sort	of	stuff	were	you	working	on	Amazon	then
as	a	developer	there?

Irene	Yu 09:30
Yeah.	When	I	moved	into	software	engineering,	I	actually	started	working	at	a	personal	finance
company	that	helps	people	manage	their	money	and	get	access	to	financial	advice.	So	I	was
working	on	their	front	end	application.	I	was	mostly	fixing	bugs	and	working	on	continuous
improvement	tasks.	Then	I	moved	into	the	advertising	org.	And	this	was	a	really	big	jump

I

I

I

I



because	I	went	from	working	on	simple	front	end	applications	to	my	team	fully	owning
databases,	infrastructure	and	dealing	with	scaling.	And,	you	know,	we're	talking	about
hundreds	of	1000s	of	people	visiting	our	software	at	any	given	moment.	So	scaling	was
definitely	a	big	priority.	Yeah.	So	I	started	building	out	the	front	end	application	of	an	app	that
allows	UI	UX	designers	to	build	their	own	landing	pages	without	the	help	of	it,	though.	And	then
10	months	into	my	time,	I	actually	moved	into	a	back	end	development.	So	I	owned	a	product
that	lets	customers	schedule	test	drives,	with	our	car	advertising	partners,	like	Audi	and
Mercedes	for	free.	And	actually	the	first	test	drive	campaign	launched	in	the	UK.

Jason	Knight 10:37
There	you	go,	maybe	I	saw	it.

Irene	Yu 10:40
Yeah,	too	bad	you	didn't	get	to	take	advantage	of	it,	because	I	thought	it	was	an	awesome
campaign.	So	then,	I	was	working	on	advertising.	And	then	I	moved	into	the	internal
documentation	team.	And	I	built	a	lot	of	work	on	both	the	front	end	and	on	the	back	end.

Jason	Knight 10:57
Yeah,	and	that's	obviously	really	interesting	kind	of	traversing	all	of	the	different	parts	of	the
stack	as	well.	So	again,	like	back	in	my	day,	when	I	was	still	developing	stuff,	I	think	having	an
understanding	of	all	the	different	parts	of	the	of	the	stack,	and	the	the	front	end	database,	the
architecture,	the	back	end,	is	obviously	really	helpful,	and	maybe	something	that	not	all
developers	get	to	do.	And	I	think	it's	something	they	all	should	do.	But	it	also	feels	like	that's
something	that's	really	helpful	for	you	from	a	kind	of	programme	perspective,	from	a
development	of	a	training	course	type	perspective,	if	you're	trying	to	bring	someone	up	into
this	the	you've	kind	of	got	that	wide	ranging	experience.	Did	you	find	that	that	was	really
helpful	in	informing	what	should	go	into	these	training	programmes?

Irene	Yu 11:40
Yeah,	definitely.	I	mean,	my	experience	definitely	helped	me	a	lot	with	the	content	and	the
course	at	skip	level.	I	mean,	I	just	learned	a	time	from	some	of	the	smartest	engineers	I've	ever
met.	And	I,	I	10X-ed	as	a	dev	just	like	breathing	the	same	air	as	them.

Jason	Knight 11:59
Yeah,	that's	fabulous.	And	I	guess	one	question,	then	that	I	have	to	ask,	and	I	think	that	maybe
some	of	those	brilliant	devs	that	you've	worked	with,	and	some	of	the	people	that	you've
learned	from	and	some	of	the	teams	that	you've	been	in?	I	mean,	I	think	it	is	fair	to	say	that	not
all	developers	have	a	reputation	of	being	particularly	patient	with	non	developers.	Like	some
developers	really	look	down	on	non	developers,	to	be	honest,	yeah,	like,	based	on	some	of	the
people	that	I've	worked	with	in	the	past,	they	get	kind	of	a	little	bit	annoyed	when	people	don't

I

I



understand	what	they're	talking	about	or	can't	talk	to	them	on	their	terms.	And	you	don't	have
to	file	on	say,	Twitter	or	other	social	media	platforms	to	see	product	managers	digging	at
developers	and	developers	digging	it	product	managers,	and	everyone	kind	of	just	so
comments.	Yeah,	turning	that	guns	on	each	other.	And,	you	know,	ultimately,	they	should	be
uniting	against	their	real	enemy,	the	salespeople,	right.	But	the	point	is	that	you've	got	this
kind	of	dynamic.	And	obviously,	that's	not	a	dynamic	that	you	subscribe	to,	because	you're
trying	to	help.	Yeah,	people	that	are	in	that	situation	to	become	more	technical.	But	what
specifically	then	gave	you	the	urge	to	step	away	from	development	and	to	cross	that	line?	And
try	to	educate	these	people	in	such	a	constructive	way?	Because	not	all	developers	would	have
done	that,	right?

Irene	Yu 13:11
Yeah,	right.	I	started	skip	level	when	I	was	a	dev.	And	when	I	was	an	engineer,	I	started	tech
mentoring	a	product	manager	that	had	approached	me	and	asked	for	help,	because	she	was
really	struggling	with	just	working	with	us,	like	the	engineering	team.	Yeah.	And	she	couldn't
keep	up	with	discussions,	and	she	just	felt	very	unconfident	at	work.	And	frankly,	I	can	tell
because	some	of	the	questions	that	she	asked	during	technical	meetings	really	show	that	she
lacked	a	very	basic	understanding	of	software.	Right.	And	you're	totally	right,	you	know,
members	on	the	team	that	was	on	the	team	would	get	a	little	bit	frustrated.	So	I	started
working	with	her	to	get	her	kind	of	up	to	speed	on	the	software	fundamentals.	So	I	was	meeting
with	her	about	twice	a	month.	And	sitting	with	her	during	product	ideation,	she's	coming	up
with	ideas	to	kind	of	talk	through	the	technical	feasibility	of	what	she's	thinking	about,	like	the
product	and	the	feature.	And	after	working	with	her	for	a	while,	I	distinctly	remember	that	she
was	signed	to	ask	much	better	questions	during	product	engineering	meetings.	And	through
that,	you	know,	the	whole	mentoring	experience	with	her,	I	realised	just	how	many	people	in
tech	struggle	silently	with	low	confidence	because	they	don't	understand	how	technology	or
software	works.	And	they	don't	really	know	how	to	communicate	with	that.	Right.	And	I	think
that	that's	totally	understandable.	Because	even	if	you're	not	a	dev,	you're	still	building
software.	Right?	So	you're	still	a	very	important	part	of	the	team.	Yeah.	Now	imagine	how	much
better	communication	and	collaboration	would	be	if	everyone	was	actually	on	the	same	page
and	speaking.	And	it	was	around	the	time	that	I	realised	that	there	weren't	really	resources	out
there	to	teach	technical	skills	and	concepts	to	non	engineer	professionals,	so	product
managers,	or	designers	or	non	technical	sort	of	founders,	most	people	who	want	to	try	to
become	more	technical	usually	go	for	a	coding	pass.	And	after	the	coding	class,	they	would	tell
me,	you	know,	I	just	took	this	coding	class	on	Python.	And	then	they	have	no	clue	what	to
actually	do	with	that	information	that	they	just	learned,	right?	So	coding	isn't	really,	it's	not	a
very	effective	way	to	become	more	technical,	because	it	focuses	on	going	very	deep	into	a
narrow	vertical	and	software,	when	really,	we	should	be	focusing	on	having	a	breadth	of
knowledge	throughout	the	software	development	lifecycle.	So	once	I	came	to	this	realisation,
that	there	weren't	resources	out	there,	for	people	like	this	product	manager	that	I	had
mentored,	I	knew	I	wanted	to	start	working	on	building	skip	level.	And	also	because	it	was
really	fun,	mentoring	her.

Jason	Knight 15:50
So	that's	not	a	very	developer	attitude.	But	I	think	that	the	point	there	is	really	valid,	like	I've
worked	with	product	managers,	myself	and	my	time	and,	you	know,	seen	product	managers
out	and	about	in	the	community	that	maybe	lack	some	of	that	background,	and	like	you	say,

I



it's	no	problem	for	people	to	lack	a	background,	it's	completely	understandable	if	they	come
through	a	different	path,	like	if	they've	come	from	marketing,	or	if	they've	come	from	customer
success,	or	they've	come	via	some	other	path,	which	hasn't	really	intersected	with
development	that	much.	And,	obviously,	it's	very	common,	if	you	think	of	big	tech,	and	you
think	of	maybe	some	of	the	big	Fang	companies	or	whatever	Fang	is	called	now	all	the
companies	are	changing	their	names.	Like	they,	that's	kind	of	like	the	archetype	right?	That
you	get	these	developers	that	then	become	product	people	or	these	developers	that	come
founders?	I	guess	the	question	then	arises	off	of	that	is	you've	obviously	finished	with	that	one
person	back	then	you	taught	that	person	what	they	needed	to	know.	And	then	you	started	skip
level.	But	as	part	of	that,	did	you	start	a	mini	Skiplevel	programme	within	Amazon	and	start
training	other	people	there	as	well?

Irene	Yu 16:56
No,	I	actually	ended	up	mentoring	one	on	one	to	product	managers	and	seeing	a	similar	results
in	both	of	them.	And	the	seeing	that	they	both	started	to	be	more	confident	during	technical
discussions.	But	actually,	after	a	tech	mentoring	the	product	managers,	I	started	teaching	the
skippable	programme	live	on	the	weekend.	So	the	early	version	of	the	skip	level	programme.	I
taught	it	to	professionals	who	didn't	work	on	my	team.	And	I	taught	them	on	the	weekends,	it
was	about	five	weeks,	two	or	three	hours	per	weekend.	And	once	I	saw	Yeah,	that	there	was	a
real	appetite	to	learn	a	lot	of	people	want	to	sign	up,	and	that	people	needed	resources	to	help
them	learn.	That's	when	I	decided	to	go	full	steam	ahead	on	skip	level.

Jason	Knight 17:39
Yeah,	that	makes	sense.	And	it's	obviously	a	little	bit	of	kind	of	emergency	market	validation
there	as	well,	like,	so	you're	starting	to	become	a	product	manager	yourself	back	at	that	point
to	start.	So	doing	that	research	and	doing	almost	like	an	MVP	of	the	of	the	approach,	which	I
think	is	fabulous.

Irene	Yu 17:55
Yeah,	definitely	learned	a	lot	about	product	management,	and	just,	you	know,	working	on	skip
level,	but	also	talking	to	a	lot	of	product	managers.

Jason	Knight 18:02
Yeah,	absolutely.	And	I	think	that's	fantastic.	You	know,	but	I	guess	one	question	I	do	have,	and
we've	kind	of	touched	on	a	couple	of	times	this	idea	that	coding	isn't	the	way	to	learn	to	be
technical,	which	is	completely	fair	enough.	And	I	have	to	learn	a	lot	of	other	stuff,	which	again,
is	completely	fair	enough.	But	what	kind	of	stuff	that	we	specifically	talking	about,	like,	like,
How	deep	did	they	go,	they	kind	of	just	get	an	idea	of	different	types	of	databases	and	want	to
see	ICD	pipeline	is	or	are	they	going	like	mega	ultra	deep	into	some	really	hairy	concepts	and
almost	getting	to	the	stage	where	they	could	become	a	entry	level	DevOps	engineer,	like	how
deep	do	they	go	into	that?

I

I



Irene	Yu 18:40
That's	such	an	awesome	question,	Jason.	So	I	talked	about	going	for	breadth	of	knowledge	over
depth	of	knowledge,	right?	So	going	deep,	is	going	deep	into	coding,	which	is	one	vertical	in	the
software	development	life	process.	But	it's	actually	important	to	see	actual	demos	of	technical
tools	and	concepts,	and	even	do	some	of	that	work	yourself.	But	so	what's	the	actual
philosophy	of	skip	level?	So	if	coding	isn't	going	to	actually	make	someone	technical?	What
should	they	focus	on	instead?	So	I	teach	that	they	should	be	focusing	on	improving	for	specific
technical	skills.	So	what	are	the	skills?	So	the	first	one	is	having	a	broad	awareness	of	different
technologies	that	are	available	in	industry,	right?	So	for	example,	API's,	message	queues	and
job	schedulers.	And	this	kind	of	helps	you	with	understanding	the	availabilities,	but	also	the
limits	of	technology.	The	second	skill	is	understanding	technical	trade	offs.	So	as	soon	as	a	dev
gets	a	feature	or	a	requirement,	they	start	immediately	thinking	about	how	to	build	it.	So	the
things	that	are	going	through	a	devs	mind	is	how	do	I	build	for	maintainability?	How	do	I	make
sure	that	this	is	secure,	right?	How	do	I	make	sure	that	this	is	reliable	and	flexible?	How	do	I
make	sure	that	the	system	is	fault	tolerant?	How	would	I	build	the	system?	So	being	able	to
think	through	these	types	of	technical	trade	offs	will	go	a	really	long	way?	Being	able	to
empathise	with	them.	Yeah.	And	then	there's	the	third	one,	which	is	being	able	to	speak,
communicate	and	understand	technical	jargon.	So	this	one's	pretty	obvious.	The	last	skill	is
having	a	familiarity	with	the	process	of	building	software,	also	known	as	the	SDLC,	the	software
development	lifecycle.	So	understanding	this	process,	and	all	of	the	tools	and	concepts	that	are
involved,	will	help	you	understand	how	long	it	takes	to	build	a	feature	and	what	could	actually
go	wrong	and	how	to	speak	about	it.	So	these	are	the	four	skills	that	skippable	aims	to	improve
for	students,	none	of	them	involve	coding.	So	I	often	use	you	know,	real	life	product	scenarios
in	the	video	lessons	to	kind	of	explain	how	different	technologies	are	used	to	tackle	what	types
of	product	problems	by	also	do	demos	throughout	the	course	to	kind	of	show	concepts	like
spinning	up	a	MySQL	database,	querying	a	database,	and	then	also	other	hands	on	activities.
So	those	hands	on	activities	are	actually	really	popular	with	students	because	it	allows	them	to
actually	do	some	of	the	work	themselves	along	with	questions	that	allow	them	to	critically
think.	So	for	example,	in	a	module	on	data,	students	are	given	a	product	scenario	and	then
asked	to	design	the	database	schema,	and	then	create	the	actual	database	along	with	some
mock	data.	You	know,	so	going	back	to	your	original	question,	the	course	does	go	deeper,
where	we	need	to	in	order	to	build	more	empathy,	and	be	able	to	visualise	these	technical
concepts	and	be	able	to	have	a	detailed	conversation.	But	it	never	goes	so	deep	that	it
becomes	too	confusing,	and	really,	completely	useless	the	role.

Jason	Knight 21:34
But	do	product	managers	in	your	opinion,	really	need	to	be	technical.	Like	if	we	go	back	to
some	of	these	interview	guides	that	you	see	for	product	management	jobs,	and	you	see	all
these,	again,	Fang	or	whatever	it's	called	companies	sitting	there	and	saying	that	you	have	to
do	either	estimation	questions,	which	isn't	coding	or	actual	pseudo	coding	or	coding	exercises
within	product	management	interviews	to	kind	of	get	in	and	get	the	job.	Now,	what	we've	been
speaking	about	so	far	has	been	very	much	about	well,	that's	not	a	good	measure	of	a	product
manager.	So	do	you	really	think	that	these	people	that	are	interviewing	people	like	this	are
doing	a	good	job	in	asking	product	managers	to	be	pseudo	coders?

Irene	Yu 22:10

I

I



Irene	Yu 22:10
Well,	the	short	answer	is	no.	I	don't	think	it's	fair	at	all	to	do	coding	interviews	for	product
managers,	because	there	is	simply	because	product	managers	aren't	expected	to	code	in	the
role,	right?	I	mean,	I	mean,	dev	teams	certainly	do	not	expect	product	managers	to	ever	code
probably	be	their	worst	nightmare,	right?	Yeah,	absolutely.	I	mean,	it's	already	a	nightmare	for
them.	To	have	product	managers	do	it	is	just	terrible.	But	you	know,	I	will	just	talk	about	why
there	are	technical	questions	for	PMS	during	interviews	in	the	first	place.	Companies,	especially
big	companies	want	product	managers	that	are	technically	skilled,	because	they	know	what	a
difference	that	makes.	So	work	with	a	product	manager	that	can	communicate	technically,	and
understand	what	goes	into	actually	building	an	app.	And	you	know,	knowing	that	building	an
app	is	actually	really	hard.	And	sometimes	it's	just	not	as	easy	as	you	know,	just	build	it,	you
know,	and	having	very	hard	and	flexible	deadlines.	dev	teams	work	better	with	product
managers	are	technical,	because	it	cuts	down	on	a	lot	of	inefficient	or	frustrating
communication.	And	technical	product	managers	tend	to	write	better	requirements	because
they	understand	what	devs	have	to	go	through	in	order	to	build	something.	So	that's	number
one,	why	there	are	technical	interviews	for	PMS	at	all.	But	I'll	tell	you	why	big	tech	companies
do	coding	interviews	for	product	managers.	It's	because	the	tech	industry	hasn't	figured	out	a
better	way	to	test	for	technical	skills	during	interviews.	Yeah,	so	testing	for	whether	a	product
manager	can	code	is	really	just	a	proxy	for	whether	this	product	manager	is	technically	skilled.
And	this	is	a	fallacy	because	coding	and	being	technical.	They	are	not	synonymous.	So	a
technical	product	manager	that	I	know	who	doesn't	have	a	background	in	engineering,	but	is
very	technical.	He	uses	a	saying	that	goes,	you	don't	have	to	be	a	basketball	player	to	know
what	a	free	throw	is.	Yeah,	you	know,	you	can	still	know	the	rules	of	basketball	without	being	a
basketball	player	yourself.	And	the	same	goes	for	software,	you	can	still	understand	how
software	is	built	and	what	goes	into	it	without	being	a	dev,	right?	So	it	makes	sense.	So	instead
of	testing	for	coding	ability,	a	better	way	to	test	product	managers	for	technical	skills	is	to	focus
on	the	four	technical	skills	that	I	talked	about.	So	broad	awareness	of	available	technologies,
being	able	to	speak,	communicate	and	understand	common	terms	and	concepts,	being	able	to
think	through	technical	trade	offs	and	understanding	the	software	development	process.	So
basically,	you	know,	product	managers	do	not	need	to	code	and	shouldn't	ever	be	expected	to
code	and	knowing	how	to	code	is	not	the	same	as	being	technical

Jason	Knight 24:42
I'm	detecting	a	theme.	But	I've	been	in	situations	before	with	very	non	technical	people	trying
to	specify	database	technologies	because	they've	seen	some	articles	on	a	website	or	they've
just	heard	something	been	said	in	passing	and	it	sounds	good	to	them.	And	there's	obviously	a
spectrum	of	light	Being	technical	or	not	technical,	and	you	can	be	any	point	on	there.	And	I
guess	what	we're	saying	is	that	when	people	way,	way	down	one	end	of	that	spectrum,	they,
they	probably	shouldn't	really	be	trying	to	make	any	technical	decisions	at	all,	because	they
don't	really	have	any	knowledge	to	back	that	up.	Are	you	worried	that	there's	this	possibility
that	people	could	take	your	programme	become	more	technical,	and	then	go	into	their	baseball
bat	bouldering	into	the	standard	one	morning	or	into	the	sprint	planning	and	say,	Hey,	I	know
enough	technical	stuff	now.	And	you	should	do	this	and	start	looping	over	specific	solutions?	Or
do	you	think	that's	not	really	a	problem?

Irene	Yu 25:37
The	whole?	Gosh,	I	hope	not.	I	hope	not.	I	mean,	you	know,	that's	something	that	does	happen
sometimes,	especially	when	the	product	manager	was	a	dev	themselves,	and	a	part	of	them

I

I



sometimes,	especially	when	the	product	manager	was	a	dev	themselves,	and	a	part	of	them
maybe	misses	coding,	and	so	they	want	to	make	the	decisions.	Yep.	But	this	is	not	something
that	I	suggest,	you	know,	students	do,	right	like	to	go	into	one	on	one	combat	with	a	dev	team
like	that	is	not	helpful	at	all.	But	with	the	knowledge	that	students	get	from	the	course,	they	will
be	able	to	better	come	up	with	suggestions	for	technical	solutions.	Now,	I	do	encourage	product
managers	to	voice	their	opinions,	right?	Not	just	product	managers,	but	really	anyone	working
with	a	dev	team.	Yeah,	they	should	always	voice	their	opinions,	of	course,	humbly	and
respectfully.	And	most	importantly,	they	should	know	what	they're	talking	about.	Right?
Otherwise,	that's	just	not	listen.	But	But	ultimately,	the	Dev	has	the	most	context	about	the
application.	Right?	So	they	own	the	house.	Yeah.	So	product	managers	should	be	part	of	the
conversation,	they	should	contribute	their	ideas,	the	suggestions,	but	ultimately,	let	the	dev
team	take	ownership	of	their	expertise.

Jason	Knight 26:43
Yeah,	I	guess	as	long	as	they	keep	on	the	right	side	of	the	tracks,	and	I	want	to	be	happy	and
no	one's	going	to	be	arguing	too	much	for	anyone	else.	But	if	you	consider,	like	the	golden
journey	of	skip	level,	so	someone	starts	out,	they	enrol	on	the	programme,	they	go	through	the
process,	they	come	out	the	other	side,	hopefully	with	some	nice	certificate.	And	they've	kind	of
got	to	level	one	of	what	is	you've	got	to	offer?	What	do	they	then	go	and	do	like	is	that	them
done?	And	they're	just	kind	of	fine.	And	they	just	kind	of	pick	everything	else	up	as	they	go?
Was	there	like	a	future	path	for	them?	Via	you,	or	via	some	follow	on	service	that	you'd
recommend	to	them?

Irene	Yu 27:19
Yeah,	well,	I	want	to	first	say	that	success	looks	a	little	bit	different	from	person	to	person,
success	isn't	gonna	be	the	same	for	everyone.	And	it	depends	on	their	skill	level	and	the
expectations	of	their	job	or	what	their	goal	is,	right.	So	for	example,	success	might	look	very
different	for	technical	writers	versus	someone	who's	in	a	client	facing	role.	And	that	just	needs
to	be	able	to	coherently	speak	and	explain	technical	concepts,	versus	someone	who	has	a	non
technical	sort	of	founder	that	just	needs	to	be	able	to	interview	a	CTO,	right?	Yeah.	So
ultimately,	again,	my	goal	for	students	is	to	come	out	and	be	able	to	fish	for	themselves,	right
be	able	to	ask	the	right	questions,	and	then	comprehend	what's	been	said	to	them	or	what
they're	reading	or	what	they're	looking	at.	So	that	no	matter	where	they	move	in	their	career,
whether	that's	looking	for	a	new	job	or	working	with	a	third	team.	And	if	a	new	technology
comes	out,	they	can	feel	confident	in	their	ability	to	figure	things	out.

Jason	Knight 28:17
Makes	a	lot	of	sense.	But	I	guess	you've	had	a	few	students	going	through	this	already,	like
you've	been	running	this	for	a	bit	now.	And	I'm	assuming	that	you've	had	a	few	people	come
through	and	finish	the	programme	and	go	on	to	do	whatever	it	is	that	they	do	in	their	jobs	that
they've	got,	or	the	jobs	that	they	get	afterwards.	Are	there	any	testimonials	or	kind	of	stories
that	stick	out	from	the	people	that	have	come	through	the	programme	that	that	really	make
you	think	this	is	all	been	worthwhile?

I



Irene	Yu 28:43
Oh	my	gosh,	yeah,	I've	actually	been	blown	away	from	some	of	the	unsolicited	messages	that
I've	gotten	in	the	testimonials	I've	gotten.	So	I	just	had	a	student	in	the	skippable	programme.
He's	a	product	manager.	And	last	week,	he	sent	me	a	direct	message	after	he	had	finished	a
course.	And	he	told	me	that	he	used	the	knowledge	he	got	about	software	architecture	and
software	diagrams	to	create	one	for	his	team	for	his	product,	because	one	didn't	already	exist
well,	and	that	the	engineers	loved	it.	And	this	was	something	that	he	wouldn't	have	been	able
to	do	before	skip	level.	So	it	wasn't	just	for	the	team,	but	he	wanted	to	use	a	softer	diagram
because	he	was	having	trouble	kind	of	visualising	the	system.	So	it	was	also	just,	you	know,	for
him,	but	it's	kind	of	useful	for	the	entire	team.	I	had	another	student	who	was	a	business
development	manager	before	Amazon	Web	Services.	And	after	she	finished	the	first	section	on
cloud	computing,	she	sent	me	an	email	and	said,	I	finally	understand	the	difference	between	EC
two	and	ECS.	And	that	it	was	so	much	easier	to	understand	than	the	internal	Amazon	training.
By	the	way,	I	have	taken	the	internal	Amazon	training,	it	is	very	verbose,	it	is	very	difficult	to
actually	understand.	So	for	her	to	To	say	that	she	actually	now	understands	easy	to	an	ECS,
which	is,	you	know,	pretty	high	level	stuff	is	absolutely	priceless.	And	she	said	it's	absolutely
priceless.	So	this	was	information	that	was	directly	related	to	her	work,	right,	her	job.	I	had
another	student	who	has	a	background	in	strategy.	And	he	has	zero	and	I	mean	zero
experience	in	tech.	So	Facebook	suffered	an	outage,	and	I	had	written	a	post	about	it	on
LinkedIn.	And	it	had	a	lot	of	technical	concepts	or	some	technical	jargon,	the	student	comments
and	said,	I	cannot	believe	that	I	actually	understood	the	majority	of	what	you	brought.	And
before	skip	level,	I	would	have	absolutely	been	scratching	my	head.	So	you	know,	this	student
just	needed	a	place	to	start.	Yeah,	he	needed	general	context	and	a	foundation.	And	so	that's
what	he	got.	Right?	That's	success	for	him.	The	last	student	was	one	of	the	students	that	I
taught	live,	and	he	was	a	newer	product	manager.	And	one	day,	and	this	was	after	he	took	the
course,	he	texted	me.	And	in	all	caps,	he	said,	one	of	the	devs	just	asked	me	if	I	can	merge	into
live,	and	I	actually	understood	him.	I	cannot	believe	it.	So	the	same	student	didn't	say	no.	Yeah,
I	hope	he	said,	Yes,	yeah.	And	you	know,	so	that	made	him	really	excited	that	he	actually
understood	and	that	he	didn't	have	to	make	something	up,	right.	The	same	student	also	started
interviewing	for	a	new	PM	role.	And	one	of	the	questions	that	he	got	was,	how	much	do	you
know	about	the	software	development	lifecycle?	Yeah.	And	guess	what,	that's	an	entire	module
in	this	couple	of	programmes.	So	he	was	able	to	confidently	answer	I	know	everything	about
the	software	development	lifecycle.

Jason	Knight 31:43
Excellent.	So	it	sounds	like	you're	already	fighting	the	good	fight	and	bringing	everyone	up	and
making	them	more	effective	at	their	jobs,	which	is	fantastic.	Hiding	the	good	fight,	it's	worth
fighting	the	good	fight.	But	imagine	that	someone	hasn't	started	the	skip	lover	yet.	Or	maybe
they	can't	afford	it,	or,	you	know,	they	just	need	a	little	bit	of	advice	to	get	them	started	before
they	come	along	and	find	you.	So	some	product	managers	sitting	there	struggling	a	bit	to	build
that	relationship	with	their	dev	team,	maybe	not	so	confident	in	their	technical	skills,	aside
from	advising	them	to	sign	up	to	skid	level,	what's	like	one	piece	of	advice,	you'd	give	these
people	to	get	them	started	and	maybe	help	them	build	a	little	bit	of	their	own	confidence.

Irene	Yu 32:21
I	do	have	a	few	actionable	tips	that	I	share,	one	of	these	tips	here,	and	this	is	one	that	I	really

I

I



I	do	have	a	few	actionable	tips	that	I	share,	one	of	these	tips	here,	and	this	is	one	that	I	really
love.	And	this	tip	goes	for	everyone,	anyone	can	use	it,	even	if	you're	just	interviewing	or	you're
just	starting	out,	or,	you	know,	you	already	have	a	job	in	tech.	So	instead	of	taking	a	coding
class,	you	know,	because	I	rail	against,	you	know,	taking	coding	class,	in	order	to	be	more
technical.

Jason	Knight 32:43
I	remember	that!

Irene	Yu 32:45
Yeah.	Right.	So	instead	of	taking	a	coding	class,	take	a	few	tutorials	from	popular	cloud
computing	services.	So	cloud	computing	platforms,	offer	many	services	and	tools,	and	each	of
them	come	with	their	own	tutorials,	right.	So	some	popular	cloud	computing	platforms,	I
suggest	checking	out	Amazon	Web	Services.	Firebase,	as	are	some	of	the	tutorials	can	be	a
little	bit	advanced.	So	I	do	suggest	starting	off	with	the	simpler	ones.	And	as	you	go	along,	if
there	are	any	concepts	or	terminologies	that	are	used	in	a	tutorial,	that	you	don't	understand,
to	do	just	a	little	bit	of	research	on	them.	And	this	is	a	lot	better	than	taking	coding	class
because	it	exposes	you	to	more	parts	of	the	software	development	lifecycle.	So	for	example,
how	do	I	set	up	infrastructure?	How	do	I	pull	down	a	code	base?	How	do	I	edit	the	code	base
using	a	virtual	control	tool?	How	do	I	commit	the	code?	How	do	I	ship	the	code?	How	do	I	use	a
database?	Right?	I	do	have	a	few	recommended	tutorials	to	start	out	with	on	the	skip	level
website.	And	it's	on	the	resources	page.	So	skip	Loboda	co	slash	resources.

Jason	Knight 33:54
Very	good.	Excellent	advice.	And	what's	next	for	skip	level	then?	I	mean,	have	you	got	any
plans	for	world	domination?	Or	maybe	the	first	taking	over	the	Amazon	training	programme?

Irene	Yu 34:03
Yeah,	world	domination?	No,	I	think	Jeff	Bezos	and	Elon	Musk	are	working	overtime	in	in	that
department.	I	don't	think	they'd	be	happy	if	I	joined.	Yeah,	so	a	few	things	skip	level	is	actually
working	directly	with	teams	and	companies	to	train	the	employees.	So	we've	recently	been
training	product	management	teams	at	different	companies.	There	are	also	bigger	plans	for	the
skip	level	community.	Currently,	only	those	who	enrol	in	the	programme	can	join,	but	we	will	be
opening	up	a	smaller	section	of	the	community	to	everyone	who	wants	to	become	more
confident	in	their	tech	skills.	There	are	plans	for	technical	workshops	and	live	q&a	sessions	with
me	other	tech	mentors	and	product	managers	and	technical	sort	of	professionals.	So	yeah,	stay
tuned.	It's	gonna	be	a	wild	ride	next	year,	but	I'm	super	excited.	And	I	guess	that's	my	version
of	world	domination.

Jason	Knight 34:55
Okay,	well,	you	can	only	dominate	the	world	if	you	start	dominating	bits	of	it	first.	Guess	start
small.	So	where	can	people	find	you	after	this	if	they	want	to	chat	about	technical	stuff	or	talk

I

I



small.	So	where	can	people	find	you	after	this	if	they	want	to	chat	about	technical	stuff	or	talk
about	skip	level	or	maybe	even	sign	up.

Irene	Yu 35:07
So	the	best	way	is	to	find	me	are	on	social	media,	Twitter	and	LinkedIn.	My	handle	is	I	am	hiring
you.	That's	@iamireneyu,	my	DMs	are	always	open	and	I	love	connecting	with	and	hearing
about	people's	stories.	So	definitely	reach	out.	The	other	way	to	reach	me	is	through	the	scope
of	a	website	at	Skiplevel.co.	If	you	click	on	the	talk	to	the	instructor	button,	then	you	can	book
a	time	with	me	to	chat	about	your	career	goals	or	find	out	more	about	Skiplevel.

Jason	Knight 35:36
Sounds	good.	I'll	make	sure	to	link	that	in	the	show	notes.	And	hopefully	you'll	get	a	few	more
technically	incompetent,	but	soon	to	be	technically	competent	product	managers	coming	your
way.	Well,	it's	been	a	fantastic	chat.	So	obviously	really	appreciate	you	taking	the	time	and
sharing	your	thoughts,	opinions,	and	maybe	some	of	the	ways	that	we	can	all	be	better	being
technical.	Obviously,	we'll	stay	in	touch	but	yeah,	that's	for	now.	Thanks	for	taking	the	time.

Irene	Yu 35:57
Thank	you	so	much,	Jason,	this	was	super	fun.

Jason	Knight 36:02
As	always,	thanks	for	listening.	I	hope	you	found	the	episode	inspiring	and	insightful.	If	you	do
again,	I	can	only	encourage	you	to	hop	over	to	OneKnightInProduct.com,	check	out	some	of	our
other	fantastic	guests,	sign	up	to	the	mailing	list	or	subscribe	on	your	favourite	podcast	app.
Make	sure	you	share	with	your	friends	so	you	and	they	can	never	miss	another	episode	again.
I'll	be	back	soon	with	another	inspiring	guest.	But	as	for	now,	thanks	and	good	night.

I

I


